

AQA Computer Science A-Level
4.4.3 Context-free languages

Intermediate Notes

www.pmt.education

Specification:

4.4.3.1 Backus-Naur Form (BNF)/syntax diagrams

Be able to check language syntax by referring to BNF or syntax
diagrams and formulate simple production rules

Be able to explain why BNF can represent some languages that
cannot be represented using regular expressions

www.pmt.education

Context-free languages

A context-free language is a set of strings and symbols that follow a set of rules called
production rules . A production rule is a simple as replacing one character for another.
The table below shows three examples of production rules.

 a → ab

This production rule
specifies that the a
character can be replaced
by the two characters ab.

a → aa

This production rule
describes that the character
a can be replaced by two a
characters.

b → a

This production rule
specifies that a b character
can be replaced by an a
character.

Backus-Naur form

Backus-Naur form is a way of notating context-free languages . It uses statements in
which the left hand side is defined by the right hand side .

Non-terminals
Text which is placed inside of angle brackets represents something called a
non-terminal (these are sometimes also called meta-components). Non-terminals can
be broken down further into either more non-terminals, terminals or a combination of the
two. For example, the non-terminal <FullName> could be defined by three more
non-terminals as follows:

<FullName> ::= <Title><Forename><Surname>

Terminals
Text without any brackets represents a terminal. Terminals cannot be broken down any
further and must be taken to be the written value. For example, the letter a is a terminal
which is taken to mean the character “a”. For example, the non-terminal <Address>
could be defined as follows:

<Address> ::= <Number><Street>
<Number> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Number is a non-terminal which is defined by nine terminals from 1 to 9. The straight
vertical line represents the OR operator.

www.pmt.education

Recursion in Backus-Naur form
Backus-Naur form is capable of representing some strings
that cannot be represented by regular expressions as
regular expressions cannot support recursion like
Backus-Naur form can.

For example, the example below is the definition for a
number.

<Number> ::= <Digit>|<Digit><Integer>
<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

In plain English , these definitions read as “A number is defined as a digit or as a digit
followed by a number” and “A digit is defined as one the the numbers from 0 to 9” . The
definitions mean that the strings “2”, “53” and “78230137” all qualify as valid numbers.

Example: Representing numbers
The definitions below allow for numbers with or without a decimal part , to be defined.

<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<DigitString> ::= <Digit>|<Digit><Integer>
<Number> ::= <DigitString>|<DigitString>.<DigitString>

The definitions above allow for the definition all of the following numbers.

7 45.332 86 553.3 9.009

www.pmt.education

Syntax Diagrams

A syntax diagram is a visual representation of a regular language . Syntax diagrams use
rectangles to represent non-terminals and ellipses to represent terminals. These shapes
are joined by arrows which indicate how strings can be formed from the definitions.
Each non-terminal is defined by its own syntax diagram.

The syntax diagram above shows the definition of FullName as a formation of the three
non-terminals Title, Forename and Surname.

The example above shows two definitions: one for Digit and another for Number.
Number is defined by the non-terminal Digit which is, in turn, defined by ten terminals.

www.pmt.education

